Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles
نویسندگان
چکیده
Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core (~ 4.1 and ~ 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.
منابع مشابه
A Nano Catalyst of CoFe2o4@ B18N18 as a Novel Material
In this work the properties of CoFe2o4@ B18N18 have been illustrated as a novel catalyst to compare with well-known catalyst “Fe3O4@Silica”.It has been shown that CoFe2o4 magnetite particle can be use as important catalyst inside the B18N18 ring. In our previous papers amazing result about the BnNn properties have been calculated, exhibited (Struct. Chem., 23, 551-580, (2012); J. Phys. Chem A, ...
متن کاملIn vitro & in vivo toxicity of CoFe2O4 for application to magnetic hyperthermia
Magnetic nanoparticles offer some attractive possibilities in biomedicine because it has the special physical properties. Magnetic hyperthermia using magnetic nanoparticles requires that the magnetic particles have not only high heating ability in low magnetic field but also to be non-toxic for biomedical use. Although the reports of bulk magnetic materials or Fe3O4 nanoparticles have known for...
متن کاملFe3O4/SiO2/CeO2 Core-Shell Magnetic Nanoparticles as Photocatalyst
The Fe3O4/CeO2 magnetic photocatalyst was prepared by coating directly onto the surface of magnetic Fe3O4 particles. However a direct contact of CeO2 onto the surface of magnetic Fe3O4 particles presented unfavorable heterojunction, thus the SiO2 barrier layer between magnetic Fe3O4 and CeO2 was prepared as a core-shell stucture to reduce the negative effect by combining three steps of the hydr...
متن کاملChitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery
Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two-step wet chemical approach using NaBH4 as reducing agent for formation of Au in ethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chit...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کامل